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Simulations and mode-coupling theory calculations, for a large range of the arm numberf and packing
fraction h have shown that the structural arrest and the dynamics of star polymers in a good solvent are
extremely rich: the systems show a reentrant melting of the disordered glass nested between two stable fluid
phases that strongly resemble the equilibrium phase diagram. Starting from a simple model potential we
investigate the effect of the interplay between attractive interactions of different range and ultrasoft core
repulsion, on the dynamics and on the occurrence of the ideal glass transition line. In the two cases considered
so far, we observed some significant differences with respect to the purely repulsive pair interaction. We also
discuss the interplay between equilibrium and nonequilibrium phase behavior. The accuracy of the theoretical
tools we utilized in our investigation has been checked by comparing the results with molecular dynamics
simulations.
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I. INTRODUCTION

When a substance dissolves into another to form a true
solution and the units dispersed through the solvent are much
larger in size than the solvent molecules, we call it a colloi-
dal dispersion. There are different classes of colloidal sus-
pensions: molecules individually larger than 1 nm[1], e.g.,
proteins, polysaccharides, polymers, as well as dispersions
that arise when a number of small molecules associate to-
gether to form an aggregate; it is known, for example, that
amphiphilic molecules in a suitable solvent, above a critical
concentration, can aggregate in micelles[2]. Varying the in-
teractions between the mesoscopic constituent particles in
colloidal dispersions results in a broad range of equilibrium
and nonequilibrium fluid behavior.

One strategy to study such systems involves summing
over the solvent degrees of freedom, leaving an effective
interaction between the center of mass of the macroparticles
[3]. The resulting effective potentialVsrd depends, in a com-
plicated fashion, on the interparticle separation and it is in
general state dependent[4,5]. A special example in this con-
text is given by the pair potential describing a star polymer
solution.

Star polymers(SP) can be considered as a generalization
of polymer-coated colloidal particles in the limit where the
number of monomerssNd per chain is large and the size of
the central core is small with respect to the whole star exten-
sion. The repulsive interaction between star polymers at
short distances increases very slowly as the interparticle
separation decreases, namely in a logarithmic way. The num-
ber of chains chemically linked to a core influences the soft-
ness ofVsrd: stars with small arm numberf may interpen-
etrate widely; in the limit casef =1,2 the star polymer

reduces to a simple polymer chain. Stars with very largef
emphasize their colloidal nature, although only in the limit
f →` the potential resembles the hard-sphere one.

Recently, solutions of star polymers have received atten-
tion in relation to several medical and industrial applications
[6]. Moreover, in the last 10 years, advances in macromo-
lecular chemistry, leading to the synthesis of regular star
polymers, have made it possible to explore the physics of
very different model systems monodisperse inN and f [7,8].
Finally, these systems are very interesting from a theoretical
point of view in relation to their polymer-colloid hybrid char-
acter. Indeed the efficient design of new mesoscopic materi-
als with properties intermediate between different classes of
colloidal systems is a very important challenge in soft con-
densed matter physics.

In recent decades the equilibrium and nonequilibrium
phase behavior of SP solutions have been widely investi-
gated, both theoretically [9–12] and experimentally
[6,13–15]. These systems are an interesting example of a
complex fluid for which the phase diagram has special fea-
tures arising from the ultrasoft nature of the repulsive inter-
action, e.g., there exists a cutoff value of the functionalityf
below which the system is fluid for all densitiessfc=34d and
for f . fc the phase diagram exhibits several unusual solid
lattices as well as reentrant melting[11]; SANS and SAXS
experiments on solutions of many-armed stars abovefc, e.g.,
Ref. [16], have revealed different macrocrystal structures as
we increase the density. The functionality-dependent bcc and
fcc solids[17,18], as well as the reentrant melting transition
[19], have been experimentally observed in solutions of star-
like block copolymer micelles. A second freezing transition
observed in the same experiments can be interpreted as the
freezing in a bco crystal[20].

The dynamical properties of star polymers have been ex-
tensively investigated. Several studies, focused on star poly-
mers or starlike systems in an athermal solvent with different*Electronic address: federica.loverso@mi.infn.it
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arm numbers, have shown that it is quite difficult to nucleate
a crystal: in many cases, mainly at high functionalities, the
solutions display a gelation transition[21–26]. Molecular dy-
namic (MD) and Brownian dynamic(BD) simulation data
for a large range off and packing fractionh=sp /6drs3

show that the dynamics of star polymer solutions is ex-
tremely rich. In particular the ideal glass transition line, ob-
tained by means of the mode-coupling theory(MCT) [27],
displays a nonmonotonic behavior as a function ofh and f.
This behavior has been connected to theh and f dependence
of the effective hard core diameter of an equivalent hard-
sphere(HS) system. The detailed comparison between theo-
retical predictions and simulations confirms the validity of
the MCT approach to study the disordered arrested states in
soft matter like colloids[28,29] and in ultrasoft systems like
star polymer solutions[30]. In particular it has been con-
firmed that the modified hypernetted chain integral equation
(MHNC) is a very good approximation to study static corre-
lations in systems described by ultrasoft interactions not only
in equilibrium [31] but also in metastable states[30].

Recently, a model potential has been suggested to de-
scribe SP solutions where, in addition to the excluded vol-
ume effects, attraction emerges due to dispersion or depletion
forces. For this model the fluid-fluid phase diagram has been
determined[31] using mean field theory and two fluid-state
theories, MHNC and the hierarchical reference theory(HRT)
[32–34] for different f. This analysis shows that when the
strength of the interaction is strong enough a fluid-fluid
phase transition appears but the density-temperature coexist-
ence curve bifurcates at a triple point into two lines of coex-
istence terminating at two critical points. This peculiar phase
behavior is related to the unusual form of the repulsive con-
tribution.

Moreover, it has been shown that self-organized struc-
tures, resulting from telechelic linear homopolymers and co-
polymers, similar to star polymers, can bridge by producing
an effective attractive interaction leading to reversible aggre-
gation of macromolecules[35]. These micelles are consti-
tuted by telechelic associative polymers which have the as-
sociating groups at the chain ends. Above a critical
concentration the end groups associate in multiplets, forming
flowerlike polymeric micelles. At higher concentrations the
process of bridging can lead to the formation of a transient
gel or also induce macroscopic phase separation[36,37].

The aim of this paper is to investigate the effect of attrac-
tive interactions on the dynamics and on the occurrence of
the ideal glass transition line, trying to emphasize the special
features of the phase behavior arising from the ultrasoft na-
ture of this repulsive effective interaction. We also qualita-
tively discuss the interplay between equilibrium and non-
equilibrium phase behavior. In this work different theoretical
and numerical methods have been utilized(mean field
theory, fluid state theories, mode-coupling theory, molecular
dynamic simulations).

We recall that in recent years a great number of studies
have focused on the dynamical behavior of short ranged at-
tractive systems, which are characterized by a strong repul-
sive core besides the attraction. In particular, when the range
of the attraction becomes much shorter than the typical di-
ameter of the colloids, phenomena like a reentrant glass tran-

sition or the existence of two different glassy phases emerge
[38–40]. This peculiar behavior has been confirmed by a
large number of simulations[41–44] and experiments
[45–47]. Note that, historically, these new findings have been
predicted for the first time within MCT calculation and only
on a second stage confirmed by experiments. Consequently it
is clear that this kind of approach can be extremely useful
also for different interaction models. It is interesting now to
focus the attention on ultrasoft repulsion(typical, for ex-
ample, of a SP solution) and an attraction with different
range(which could be typical, for example, of depletion in-
teractions) and to investigate the possibility of new features.

This paper is organized as follows. In Sec. II we present
the general framework for our research. In particular, in Sec.
II A we introduce the interaction model we chose to study
star polymers in presence of attraction. Then in Secs.
II B–II D we describe the theoretical and numerical tools we
used to study the structural properties, the structural arrest,
and the diffusivity in dense star polymer solutions: MHNC,
MCT, and MD, respectively. In particular we discuss the ap-
plication of the modified hypernetted chain integral equation
to study the structural properties of star polymer solutions
and some test of its accuracy when attractive interactions are
taken into account in addition to the entropic contribution.

In Sec. III we consider the effect of attraction on the slow
dynamics and structural arrest of star polymer solutions. We
carried out a mode-coupling theory analysis which allows us
to locate the nonergodicity transition curve of the system,
using as input the information on the structure obtained by
MHNC. Our aim is to complete the picture of the phase
diagram of a star polymer solution in the presence of attrac-
tive forces, investigating the dynamics, for the values of the
parameters which govern the intensity of the attraction ex-
tensively discussed in Ref.[31]. Then we modify these pa-
rameters in such a way as to consider attractive forces of
shorter range, and we focus on the effect of these modifica-
tions on the properties of the glass state. In order to test this
difference, molecular dynamics simulations have been per-
formed and the diffusivity of the SP fluid has been evaluated
up to crystallization. In this section we again discuss the
structure of the system very close to the glass phase.

Finally, in Sec. IV we discuss and summarize our results
and we draw our conclusions.

II. INTRODUCTION TO THE MODEL AND METHODS
OF STUDY

A. Effective pair interaction

The effective pair interaction between star polymers with
f arms in a good solvent is purely repulsive and forf ù10 it
reads as follows:

Vrepsrd
kBT

=
5

18
f3/2F− lnS r

s
D + S1 +

Îf

2
D−1G sr ø sd

=
5

18
f3/2S1 +

Îf

2
D−1Ss

r
DexpF− Îfsr − sd

2s
G sr . sd,

s1d

wheres is the corona diameter of the star and depends on
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the numberN of monomers of a single arm[48]. Witten and
Pincus determined by scaling theory the explicit form of
such interaction at short distances[9]; it has been also shown
that the good agreement between theory and experiments
significantly improves if the model interaction has, in addi-
tion to a logarithmic repulsive core, a long range interaction
of Yukawa form[10,15,49,50]. This model interaction gives
a good description of small angle neutron scattering(SANS)
results on concentrated star polymer samples[15] for an
wide range off values. Forf ø10 a logarithmic-Gaussian
potential more accurately describes the effective interaction
[51] but we do not study this regime.

In a previous paper[31] the phase diagram of star poly-
mer solutions was investigated when the effective interaction
between two star polymers contains an additional attractive
contributionwsrd to be added to the repulsive partVrepsrd of
equations(1):

Vtotsrd = Vrepsrd + wsrd. s2d

This attraction could stem, for example, from a van der
Waals interaction arising from a nonperfect matching be-
tween the refraction index of the solvent and of the polymer
in a way that does not alter the basic configuration of the
single star polymer; in this casewsrd is independent from the
temperature. Alternatively attraction could be induced by
depletion interaction when a third component, which is large
compared with the solvent molecules but small compared
with the star polymers, is present in the solution. In this case
wsrd has an entropic origin and consequently it depends on
T. In this situation the size and concentration of the depletant
are, respectively, closely tied to the range and strength of the
attraction. In what follows we shall use temperature as con-
trol parameter.

To study the structural arrest and the dynamics in the
presence of attractive forces we can use the simplified model
potential utilized in Ref.[31] wherewsrd has the functional
form of a Fermi distribution, i.e.,

wsrd = −
C

expF r − A

B
G + 1

. s3d

The parametersA andB control the position and the width of
the well potential,C is the amplitude of the attractive con-
tribution. For convenience we use reduced units for tempera-
ture in terms ofC: T* = kBT/C. By a suitable choice of these
parameters one can guarantee, for the temperatures of inter-
est, thatVtotsrd does not have a significant subsidiary maxi-
mum at larger and avoid possible complications due to the
competition over different length scales. We have studied
three sets of parametersA andB in order to see the depen-
dence of the glass transition on the range and the width of
the attractive well. The first case corresponds to the potential
discussed in Ref.[31], i.e., A=2.1s, B=0.35s and we refer
to this case as SP1. For these values of the parameters, the
attractive contribution is rather long ranged and we found
that wsrd does not modify the ideal glass transition with re-

spect to the purely repulsive case. For the other two choices
of the parameter, SP2 corresponding toA=1.95s and B
=0.21s and SP3 corresponding to A=1.875s and B
=0.155s the attractive well is displaced to smaller distance
and we observed significant differences for the glass transi-
tion with respect to the only repulsive pair interaction. In
Fig. 1 we show the shape of the potential in the three cases
for f =50. It should be noticed that due to the ultrasoft char-
acter ofVrep the value ofA andB modifies not only the range
of the interaction and the position of the minimum but also
the depth of the well potential. In addition, the position and
width of the attractive well depends on temperature because
Vrep scales withT. In Fig. 1 we plot alsoVrep, at short dis-
tances we can observe thatVtot is softer thanVrep.

B. Modified hypernetted chain integral equation

In the present work we carry out a mode-coupling theory
(MCT) analysis[27] of the long-time limit of the correlation
functions to locate the ideal glass transition line of the sys-
tem. MCT provides a set of closed equations to calculate the
nonergodicity parameterfq which acts as an order parameter
for the glass(see Sec. II D). All the information needed to
solve these equations is contained in the static structure fac-
tor, defined asSsqd=krs−qdrsqdl /N and in the number den-
sity, r=N/V, rsqd being the density fluctuation variable of
wave vectorq. To calculateSsqd, we utilized the MHNC
integral equation. This equation is in general accurate also
when an attractive contribution to the interaction is present
[52]. In the case of star polymers in a good solvent it has
been verified the remarkable accuracy of this theory, to de-
scribe fluid states as well as metastable states[30,31] for a
large range off and density values.

The starting point for the MHNC equation is an exact
relation [53], obtained from a cluster expansion, which con-

FIG. 1. bVtotsrd versus the interparticle separationr /s for two
different temperatures andf =50; T* = kBT/C. We call SP1 the in-
teraction studied in Ref.[31], i.e., A=2.1s, B=0.35s; SP2 the in-
teraction corresponding toA=1.95s andB=0.21s; finally, SP3 cor-
responds toA=1.875s andB=0.155s. The figure also showsVrep

corresponding tof =50.
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nects the radial distribution function(rdf) gsrd to the inter-
particle potentialVsrd,

gsrd = expf− bVsrd + hsrd − csrd + Esrdg, s4d

wherehsrd=gsrd−1 andcsrd are the pair and the direct cor-
relation function, respectively.csrd is related tohsrd by the
Ornstein-Zernike equation.

The termEsrd, called bridge function, represents a sum of
an infinite number of terms, the so-called elementary graphs
in the diagrammatic analysis of the two-point function and,
in general, it is not known. In the MHNC scheme theEsrd is
replaced by the bridge function of a fluid of hard spheres,
EHSsrd, of suitable diameterd. To optimize this choice,
which depends on the parameterd, the free energy is mini-
mized [54]. This is equivalent to satisfy the relation

E dr fgsrd − gHSsr,hHSdg
]EHSsr,hHSd

]hHS
= 0 s5d

wherehHS=sp /6drd3.
In order to implement MHNC one needs the rdfgHSsrd of

hard spheres from which one can obtainEHS. Verlet and Weis
(VW) [55] provided an accurate parametrization ofgHSsrd
based on the PY equation with a correction which incorpo-
rates thermodynamical consistency through the Carnahan-
Starling state equation[53]. This together with equations(4)
and(5) gives a closed set of equations which are solved by a
standard iterative method.

In a previous paper some of the authors showed that the
dependence ofhHS on the density as determined by Eq.(5) is
unusual and reflects the features of the interparticles interac-
tion [31]. Moreover, in Ref.[30] we found evidence that the
characteristic sequence of maxima and minima ofhHS versus
h is directly related to the nonmonotonic behavior of the
diffusion coefficient as a function of the packing fraction.
Indeed the slow dynamics in star polymer systems at low and
intermediate densities can be qualitatively described as the
slow dynamics of the hard sphere system via a density and
functionality dependent effective diameter determined with
MHNC closure.

C. Molecular dynamic simulation: comparison between
MHNC and MD results on the correlations

To check the results of the MHNC and MCT calculations,
we performed extensive MD simulations for the model de-
scribed by the potential defined by Eqs.(1)–(3). We simulate
N=1000 particles for different values of the density, tem-
perature, and functionality. For each state point the configu-
rations have been equilibrated at constant temperature for a
time long enough to ensure both the equilibration and
decorrelation from the initial configuration. The acquisition
run started after this preliminary preparation, then the system
was simulated at constant energy. We carefully checked
whether crystallization occurred or not during the run by
inspection of the static structure factor, with the same modu-
lus, not averaged over different directions ofq vectors. In
fact to improve the averages in the calculations ofSsqd at a
given q, we generally considered up to 300 independentq

vectors chosen with a random direction but with the same
modulusq. In correspondence of these values, we evaluated
the density variables and consequently the static structure
factor for a given direction. Finally, we averaged on the dif-
ferent directions. For a liquid the structure is extremely dis-
ordered and all the terms for different directions give roughly
the same contribution to the average. When the structure
factor corresponding to a certain direction starts to grow over
the others, the system begins to show a preferable direction,
i.e., crystallization takes place. When a configuration crystal-
lized we discarded it. As discussed for the purely repulsive
case[30], the system has a strong tendency to crystallize,
being monodisperse in diameter[44]. Consequently, we will
test our predictions only when the system remains in the
liquid phase, a future direction of our research may be di-
rected toward the suppression of crystallization introducing,
for example, a second component slightly different in diam-
eter [44]. We chose as unit of length the corona diameters
and as unit of mass the mass of the particles. Moreover, we
measure the temperature in reduced units, i.e.,T* = kBT/C.

We begin our discussion on the numerical simulation by
discussing the purely repulsive case, i.e.,C=0. As exten-
sively described in Ref.[31], MHNC gives a very accurate
description of correlations for star polymers in a good sol-
vent for a wide range of densities. In Fig. 2 we present re-
sults for the repulsive case, forf =32 andh=0.6 obtained
from MHNC and Rogers-Young(RY) theoretical calcula-
tions and from MC and MD simulations[56]. The RY equa-
tion is another integral equation forgsrd which interpolates
between PY and HNC equations[57]. The agreement be-
tween MD and MHNC, and between MD simulations and
MC simulations, is extremely good. The small apparent MD
underestimation of the main peak is due to the grid we used
in the simulations. A more refined grid, however, would in-
crease the noise in the data. On the other hand, RY shows

FIG. 2. Athermal solvent: comparison between the main peak of
the structure factors we obtained with MHNC closure and MD
simulation with the results obtained by Watzlaweket al. by means
of MC simulation and RY closure;h=0.60, f =32 [Ssqd versusqs].
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some significant discrepancies with respect to simulations
results in the range of strong coupling which emerges for
packing fractions of order ofh=0.60 andh=3 [31]. By com-
parison with simulation results(both MC and MD) we de-
finitively conclude that MHNC describe accurately the struc-
ture of star polymers in a good solvent.

Hence, we focused on the attractive case and we compare
the MD results and the prediction of the MHNC theory for
the fluid case: in particular we compared the radial distribu-
tion function and the structure factor for the three different
models of the attraction described in Sec. II B in a regime of
strong coupling when the main maximum ofSsqd reaches
large values. The temperatures and packing fractions we
have chosen in our study correspond to states of interest in
the study of the ideal glass transition line, i.e., close to the
fluid-glass and glass-fluid ideal transition line. We find in
general very good agreement between MD results and
MHNC results for all the values of temperature, packing
fraction, and arm number investigated. In particular a good
accuracy is achieved in the determination of the position of
the main peak in the radial distribution functions and struc-
ture factors. Only for states at low temperature and at pack-
ing fraction corresponding to very large coupling(e.g., see
Fig. 3) one notices some small discrepancies between
MHNC and MD results.

This analysis confirms the accuracy of the MHNC integral
equation in describing the structure of an ultrasoft core po-
tential also in the presence of an attractive contribution at
longer range.

One can notice that the MHNCgsrd has some structure in
the region of the second maximum and this can even show
up as a subsidiary maximum(Fig. 3). It is known [52] that
this spurious structure is a consequence of the VW param-
etrization ofgHS in terms of the PY solution but it is believed
that this anomaly has no serious consequence inSsqd.

D. Mode-coupling theory for the ideal glass transition

In this section, we shall briefly review the nature of MCT,
and discuss the type of information it yields. The MCT of
supercooled liquids describes the dynamical transition by a
nonlinear integro-differential system of equations for the nor-
malized time correlation functions of density fluctuations
Fsq,td=krs−q,tdrsq,0dl / krs−q,0drsq,0dl, where rsq ,td
=Sl expfiq ·r lstdg. As discussed above, the only input to the
MCT equations is the equilibrium static structure factor,Ssqd
and the number density,r. The glass transition can be iden-
tified by studying the long time limit of the MCT equations,
which determine the nonergodicity parameter of the system
fq=limt→` Fsq,td. An ergodic state is characterized byfq

=0. This value is always a solution of the MCT long-time
limit equations[27].

The quantity fq obeys the equationfq/ s1− fqd=Fqsfd.
Here, the mode-coupling functionalFq is given by

Fqsfd =
1

2
E d3k

s2pd3VqW,kW fkf uqW−kWu. s6d

Equation(6) together with the equation forfq can be derived
by taking the long-time limit,t→`, of the MCT equations
[27]. The mode-coupling vertices are determined by the
structure factorSq, the direct correlation functioncq, and the
densityr,

VqW,kW ; SqSkSuqW−kWurfqW ·kWck + qW · sqW − kWdcuqW−kWug2/q4. s7d

The direct correlation function is directly related to the static
structure factor by the relationcq=s1/rdf1−s1/Sqdg. The
glass transition appears as an ergodic to nonergodic transi-
tion for the system, wherefqÞ0 solutions arise. These tran-
sition points correspond to bifurcation singularities of the
MCT equations(6) and (7).

In the present work, we numerically solved Eqs.(6) and
(7) with an iterative procedure over a grid of 650 equispaced
q vectors up toq=62.32. For the static structure factor we
used the static MHNC structure factorSsqd calculated as
described above.

III. RESULTS

A. SP1: MCT and MD results

First of all we considered the model potential we labeled
SP1. At low temperature the system has fluid-fluid phase
transition with two critical points: the first critical point is
around hc=0.026 andTc

* .0.7, the second one aroundhc
=1.04 andTc

* .0.156. Far from the critical point, we ob-
served that the structure factorSsqd, relative to the potential
Vtot, is not very different from the structure factor relative to
the simply repulsive interactionVrep. In particular the posi-
tion of the main peak does not change appreciably and its
height change for less than 1%s0.2&T* &0.6d. Conse-
quently one might expect that the location of the ideal glass
transition will not be different from the repulsive case[30].
Indeed this is the case. We studied several arm numbers
(from low value, f =24,32 to higher onef =70) for several
values of the packing fraction with MCT. Similarly to the

FIG. 3. Comparison between the radial distribution function
(top) and the structure factor(bottom) we obtained with the MHNC
closure(solid line) and MD simulation(opaque circles); h=0.628,
T* =0.25, f =50, SP2.
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case of purely repulsive interaction we deduce that belowf
=46 there is no glass phase. For 46, f ,60 the system is
fluid for low densities and glass for intermediates0.25&h
&0.7d, but it is still fluid at high densitiessh.0.7d. When
60, f ,72 the system is in a glass state for intermediate and
very high densitiess0.25&h&0.7,h&2.25d. Finally, above
f .72 the system is fluid for low densitiessh&0.25d and in
a glass state for intermediate and high densitiessh*0.25d.

Hence, the effect of the attraction does not change the
location of the ideal glass transition. Consequently, in the
temperature-packing fraction plane, the ideal glass transition
line would be trivially represented by a vertical line.

We also performed molecular dynamic simulations to cal-
culate the dependence of the diffusion coefficient, from the
long-time limit of the mean squared displacement, varying
the temperature, for different values off and the packing
fraction. This analysis supported the MCT predictions, i.e.,
the diffusion coefficient does not change appreciably with
the temperature.

Starting from the behavior of the structure factor changing
the temperature and from the analysis of the structural arrest
we performed, we can complete the picture of the phase
diagram. Forf ø34 there is no freezing transition, the two
fluid-fluid phase transitions represent stable states; forf
*50 all the density region above the density corresponding
to the triple pointTp is occupied by crystalline phases; for
34, f &50 the fluid-fluid phase transitions and their critical
points persist as stable states. In Fig. 4 we describe the whole
phase diagram forf =50: the fluid-fluid phase diagram is
calculated by means of mean field theory and the ideal glass
transition lines determined with MCT. At the equilibrium the
region around the second critical point becomes metastable
with respect to the freezing, the regions between two succes-
sive squares(from low to high densities), in the upper part of
the figure, indicate the densities where the system is solid
(data are MC results reproduced by Watzlaweket al. [11]). If
the crystallization can be avoided we can observe that the
second critical point lies outside the glassy region(see also
the inset). The limit of very high temperatures, i.e., the
purely repulsive interaction are also shown in Fig. 4, the
densities which delimit the glass region are effectively the
same with and without attractive interaction.

We conclude that, varyingf, the first critical point will
always lie outside the glass region. The second critical point,
however, will enter the glassy phase forf *70.

B. SP2: MCT and MD results

As anticipated above we tried to tune the parametersA
andB in order to enhance the effect of the attraction on the
shape of the glass-transition line. Our aim was to shrink the
well and move the minimum of the pair interaction close to
sigma.

First of all we consider the parametersA=1.95s an B
=0.21s sSP2d. As we see in Fig. 1 the well potential in this
case is shrunken approximately by 30% with respect to SP1
and the position of the minimum is changed approximatively
by 6%s0.25,T* ,0.6d. If compared to SP1 the depth of the
well potential changed from 5% with respect to lower tem-

perature untill approximatively 28% aroundT* =0.6.
In Fig. 5 we present the occurrence of the glassy phase for

different numbers of arms and as a function of temperature.
For f .46 we can summarize our results as follows: for high
temperatures the two ideal-glass lines(fluid glass on the left
and glass fluid on the right) tend to the repulsive case[30].
On lowering the temperature, however, a fluid-stabilizing ef-
fect sets in, so that the fluid-glass line tends to move to larger
values of the density. So in the low density region, roughly
below h=0.50, there is the possibility of the glass melting
when lowering the temperature. In this case increasing the
temperature, the width of the nonergodicity parameterfq,
which is a measure of the inverse of the cage localization
length, gets larger(see Fig. 6). Moreover, we observe an
increase offsq=0d lowering the temperature, corresponding
to densities closer to the coexistence curve. The effect of the

FIG. 4. SP1 fluid-fluid phase diagram(opaque triangles up) for a
star polymer solution calculated by means of mean field theory and
the ideal glass transition lines(filled circles) determined with MCT,
which delimit the region where the system is a glass. The inset
shows a magnification of the coexistence curve at higher density
[31]. On the top of the main figure we present some results about
the purely repulsive interaction, which corresponds to the limit of
very high temperature: two successive squares(from low to higher
densities) delimit the regions where the system is solid at the equi-
librium (by Watzlaweket al., MC simulation [11]); the filled tri-
angles represent the densities which delimit the glass region. Notice
that the second critical point survives with respect to the glass tran-
sition while the region around the second critical point becomes
metastable with respect to the freezing. Moreover, we can observe
that the densities which delimit the glass region are effectively the
same with and without attractive interaction. Lines are simply a
guide to the eye.
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attraction for large value off is very small and in particular
for f =70 we can see that the fluid-glass line is again very
similar to the repulsive case. On the right-hand side of the
glass region we can observe that the glass-fluid line moves to
higher densities when the temperature decreases and conse-
quently when the intensity of the attraction increases. In con-
trast to the low density case, the attraction now favors the
formation of the glass to higher density with respect to the
repulsive case. On lowering the temperature the nonergodic-

ity parameterfq presents a larger width inq. This clearly
indicates that the particles are localized on a shorter length
scale. This phenomenon could be related either to the effect
of a stronger attraction or to a larger value of the effective
repulsive length. It is interesting to stress that in all the cases
taken into account the nonergodicity parameter, presents the
typical shape of a repulsive glass, i.e., a glass that possesses
a structure dominated by the caging effect. This typical re-
pulsive behavior is characterized by oscillations in corre-
spondence to the peaks of the static structure factor with a
maximum at the first peak. It has been shown, both by MCT
calculations[40] and computer simulations[42], that for suf-
ficiently short-ranged attraction, a new glass, which has been
named attractive glass, emerges. Indeed the shape of thefq
for an attractive glass is completely different: the oscillations
are very weak and the maximum is not so pronounced. In our
investigation we encountered fingerprints only of the repul-
sive glass. The effect of the attraction and the interplay be-
tween attraction and repulsion, seem to act more on the size
of the cages and on their formation rather than on the nature
of the arrest itself. However, we have not investigated the
case of very narrow attractive wells on the length scale ofs.

The behavior of star polymers withf =45 is different: we
can observe that the attractive contribution of the interaction
favors the occurrence of glass states at low temperature. In-
deed for this value of the functionality, a stable glass phase
emerges at a temperatureT* &0.6 from the solution of MCT
equations and the density range of the glass phase gets larger
on further decrease of the temperature. In this case theq
width of fsqd increases lowering the temperature, both for
h,0.5 andh.0.5. It is interesting to note that no glass
transition is found in the corresponding repulsive case, i.e.,
in the limit of high temperature.

In the so-called “repulsive glasses” the occurrence of the
ideal glass transition in the framework of the MCT depends
strongly on the behavior of the main peak of the structure
factor, i.e., on the first neighbor interactions. In Fig. 7, we
can observe a magnification of the main peak of the structure
factor for f =50 and two different packing fractions on the
left-hand side and on the right-hand side of the ideal glass
region (MD simulations). For the different temperatures in-
vestigated we observe the same trend, forh=0.314 [Fig.
7(a)] by decreasing the temperature the main peak of the
structure factor decreases, showing a loss of the correlation
between particles. The opposite trend is observed on the
right-hand side,h=0.628 [Fig. 7(b)]. We also studied the
behavior of the first peak in the structure factor forf =45, in
this case the trend in the glass region is represented by an
increase of the main peak lowering the temperature, indeed
this effect is responsible for the anomalous formation of the
glass at this value of the functionality.

This preliminary and qualitative study, has been supple-
mented by a more thorough analysis: we performed molecu-
lar dynamic simulation for several values off, T*, and h.

In Fig. 8 we show the diffusion coefficientD /D0 as a
function of the temperature calculated for packing fraction
not far from the glass region and for different values off (42,
45, 46, 50). In the present context data forD are normalized
by D0=sÎT* / m, in order to take into account the tempera-
ture dependence of the microscopic time[44]. The MD-

FIG. 5. MCT fluid-glass and glass-fluid lines(computed with
MHNC) for different f values andA=1.95s, B=0.21s sSP2d: re-
duced temperatureT* = kBT/C versus reduced packing fractionh
=sp /6drs3. Opaque symbols, circles, triangles, squares, stars, and
diamonds correspond, respectively, tof =45,46,50,58,70. In the re-
gion between two lines, fixedf, the system is in a glass phase. The
equivalent symbols on the top of the figure delimit the glass regions
for Vrepsrd. We recall that in the limit ofT very large we return to
the simple repulsive system. Lines are simply a guide to the eye.

FIG. 6. SP2, nonergodicity parameterfq versusqs for stars with
f =50, h=0.8. Notice the smaller width of this parameter for high
temperatures.
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diffusion coefficients as a function ofT* confirm the MCT
trend. On the low density side of the glass region the diffu-
sion coefficient decreases, increasing the temperature while
on the high density side the diffusion coefficient increases,
increasing the temperature. The values ofD /D0, for fixed
temperature, decrease, increasingf; we remark that forf
=42 the system does not show glass transition.

In general it has been observed that the effect of the pres-
ence of a glass transition can be seen as a decrease in the
diffusivity also far from that part of the phase diagram where
the structural relaxation time starts to grow. Indeed this has
been encountered, for example, in a monodisperse square
well system[44] and in a purely repulsive soft potential[30].
In MD simulations both these systems presented a strong
tendency to crystallize. However, studying the behavior of

the diffusivity, it is possible to pin down the shape of the
glass transition line. Also in the present work we managed to
check that the diffusion follows the MCT predictions. The
fact that thef =45 trend could not be checked, i.e., an in-
crease of the diffusivity on rising the temperature for both
high and low density region, could be related to the fact that
the simulations should be run closer to the glass transition
and, unfortunately, this is not feasible due to the occurrence
of the crystallization. One way around this problem would be
to extend the results to a system that presents a smaller crys-
tal nucleation rate. For the square well system, for example,
this has been accomplished considering a binary mixture
[42].

Summarizing, we remark, for the different arm numbers
investigated, that forh&0.5 the attraction seems to deter-
mine a destabilization of the cages while forh*0.5 the at-
traction facilitates the formation of the glass for higher den-
sity with respect toVrep. The most peculiar behavior has been
found for a value off sf =45d for which the glass lines are
very near to the value ofh=0.5. For this packing fraction
star polymers start to interpenetrate widely. We emphasize
that, considering stars in a good solvent at the equilibrium,
this value is just in the middle of the bccs34, f &55d or fcc
sf .55d crystal phase. Related to the behavior of the struc-
ture factor corresponding to SP2, we expect that also the
densities where the system is solid, at the equilibrium, could
change weakly with respect to the repulsive case. We will
return to this point in greater detail in the conclusions and
discussion section.

Finally, we show in Fig. 9 the position of the ideal-glass
lines with respect to the fluid-fluid coexistence curves forf
=50. It turns out that the temperature should be decreased a
lot to notice possible effects of the density fluctuations
around the second critical point on the ideal glass transition
line.

C. SP3: MCT and MD results

The third case we considered is characterized byA
=1.875s andB=0.155s, and indicated by SP3. In this case
the width of the well potential decreased, with respect to SP1,
from approximatively 40% atT* =0.25 until 60% atT*
=0.6. The position of the minimum is changed by less than
9%. If compared to SP1 the depth of the well potential
changed from 7% with respect to lower temperature until
approximatively 48% aroundT* =0.6.

In Fig. 10 the occurrence of the glass phase is shown for
f =46,50,70 for a wide range of temperatures. We analyzed in
more detail the casef ø70 as here we expect very different
behaviors from the three cases in the exam.

For f ù50 the qualitative behavior is very similar to that
of SP2. For densities below the glass region the influence of
the attractive term, when lowering the temperature, is a
liquid-stabilizing effect. In the opposite regime(densities
above the glass region), increasing the intensity of the attrac-
tive contribution results in moving the glass-fluid line to
higher densities with respect toVrep. We point out that here
the curvature of the lines is more pronounced than in the SP2
case. Anyway, comparing all the cases investigated is not

FIG. 7. SP2, f =50: magnification of the structure factor(main
peak) we obtained with MD simulations at different temperatures.
(a) h=0.314,(b) h=0.628; f =50.

FIG. 8. Reduced diffusion coefficient(MD) for different f val-
ues andA=1.95s, B=0.21s sSP2d. The pluses, circles, triangles,
squares, correspond, respectively, tof =42,45,46,50(left panelh
=0.366, right panelh=0.628). Lines are simply a guide to the eye.
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trivial. This is in part due to the fact that a correct rescaling
of the temperature should be done considering the change in
the depth and the position of the well potential changingA,
B, andT, rather than the amplitudeC of the attractive term.
We will return to this point in Sec. IV.

For f ø46 the behavior of the star polymer solution is
completely different from the previous cases. Indeed forf
=46 there exists a value of the temperature,T* .0.6, below
which the system does not present a glass transition. Forf
=45 we do not observe any glass phase for all the tempera-
ture values investigateds0.4*T* *0.8d.

As for the previous case, we performed MD simulations
for different arm numbers and temperatures, confirming the
MCT result: the trend ofD /D0 is qualitatively the same as
for SP2 (see Fig. 11). For f =46 we do not capture the in-
creasing of the diffusivity when decreasing the temperature,
as we expect on the basis of the MCT results on the right-
hand side of the glass region. As in the previous case this
might be due to the fact that we did not consider packing
fractions close enough to the ideal glass lines.

Finally, we studied the behavior of the structure factor,
changing the temperature, forf ø50. As for SP2, we calcu-
latedSsqd on the left-hand side and on the right-hand side of
the ideal glass region(MD simulations).

For f =50 the trend is the same as that observed for SP2,
i.e., on decreasing the temperature forh=0.314 the main
peak of the structure factor decreases, showing a loss of the
correlation between particles. The opposite trend is observed
on the right-hand sidesh=0.628d.

For f =46 the behavior of the structure factor is different.
In Fig. 12(a), we present a magnification of the main peak in

the structure factor forf =46 andh=0.55(right-hand side of
the glass region). The picture shows a decrease of the main
peak of Ssqd lowering the temperature. Moreover, in Fig.
12(b) we present a magnification of the main peak in the
structure factor for the same arm number andh=0.51 (left-
hand side of the glass region). The trend is exactly the same
as for h=0.55: we stress that, introducing attractive forces,
star polymer solutions of 46 arms, show a loss of correlations
among particles which are responsible for the peculiar MCT
predictions(Fig. 10). This effect is enhanced as the interac-
tion is increased.

Moreover, we also studied the behavior of the structure
factor for f =45 andh=0.51; in this case the trend is repre-

FIG. 9. SP2, fluid-fluid phase diagram for a star polymer solu-
tion calculated by means of mean field theory and the ideal glass
transition lines determined with MCT. The legend is the same as in
Fig. 4. Note that the second critical point survives with respect to
the glass transition while the region around the second critical point
becomes metastable with respect to the freezing. Moreover, we can
observe that decreasing the temperature the densities which delimit
the glass region move to higher values(in these cases the effect is
small). Lines are simply a guide to the eye.

FIG. 10. MCT fluid-glass lines(computed with MHNC) for dif-
ferent f values andA=1.875s, B=0.155s sSP3d: reduced tempera-
tureT* = kBT/C versus reduced packing fractionh=rs3. Filled tri-
angles, squares, and diamonds correspond, respectively, to
f =46,50,70. The equivalent symbols on the top of the figure delimit
the glass region corresponding toVrepsrd. We recall that in the limit
of T very large we return to the simply repulsive system.

FIG. 11. Reduced diffusion coefficient(MD) for different f val-
ues and SP3. The symbols, plus, circles, triangles, squares, corre-
spond, respectively, tof =42,45,46,50(left panelh=0.366, right
panelh=0.628). Lines are simply a guide to the eye.
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sented by a decrease of the main peak lowering the tempera-
ture. We observed that the height of the main peak introduc-
ing the attractive contribution and increasing the intensity of
the attraction is in any case smaller than the peak height
relative toVrep. We recall that forf =45, MCT does not give
a glass phase for eitherVrep or SP3.

Summarizing, we can argue from Fig. 10 that for the
model interaction SP3 when h&0.5 the attraction always
seems to determine a destabilization of the cages, while for
packing fractions larger than 0.5 the attraction facilitates the
formation of the glass for higher density with respect toVrep.
For h.0.5 (corresponding to the region of interest forf
=46) the effect of the attraction seems to determine a desta-
bilization of the cages only.

In Fig. 13 we present the fluid-fluid phase diagram and
the glass transition lines forf =50.

We conclude this section by remarking that, so far, we
have discussed only the behavior of the first peak inSsqd,
while the second peak in the structure factor does not change
appreciably in all the cases investigated.

IV. CONCLUSIONS AND DISCUSSION

In this work, we studied the structural arrest and the dy-
namics in star polymer solutions when attractive forces be-
tween macroparticles are present. The model potential we
used to describe the interactions presents an ultrasoft repul-
sive term of entropic origin at short range plus an attractive
interaction at longer range. Due to the addition of the attrac-
tive contribution between star polymers the repulsive core
becomes softer on lowering the temperature and conse-
quently increasing the intensity of the attraction. We ana-
lyzed three different forms of the pair interaction between
stars, considering attractive forces of shorter and shorter
range. In this paper we focused on stars with several arm

numbers(from low value, f =24,32 to higher onef =70) at
several values of density and temperature.

We examined the structure of the solution solving MHNC
closure and performing extensive MD simulations, in this
way we tested the accuracy of the MHNC to describe the
properties which arise from such choice of the interaction
model. Over the full range of densities and temperatures of
interest MHNC and MD simulations are in a good agree-
ment. Hence we have been able to conclude that MHNC is a
good approximation to study systems described by ultrasoft-
core repulsive interactions, with and without attractive forces
between macroparticles. Having tested the accuracy of the
MHNC approach, we focused our attention on the location of
the ideal glass transition, studied within MCT.

In particular for the case characterized by the longer range
of the attraction, named SP1, the ideal-glass transition line
we obtained is not significantly modified in comparison with
the one obtained for the purely repulsive potential. Indeed
both the structure and the dynamics of the solution are not
significantly modified by introducing the attractive contribu-
tion. On the other hand, the two other systems characterized
by a shorter attractive range show some significant differ-
ences with respect to the purely repulsive pair interaction.

For f *50 SP2 and SP3, show the same qualitative behav-
ior. In particular we can distinguish two regions in density, a
low density regimesh,0.5d and a high density regimesh
.0.5d where the system, in both cases, behaves differently.
For low densities, on lowering the temperature, a liquid-
stabilizing effect due to the attractive forces sets in, so that
the liquid-glass transition line moves to larger values of the
density. Indeed, this is an interesting effect since it presents

FIG. 12. SP3, f =46: magnification of the structure factor(main
peak) we obtained with MD simulations at different temperatures.
(a) h=0.55,(b) h=0.51.

FIG. 13. SP3, fluid-fluid phase diagram for a star polymer solu-
tion calculated by means of mean field theory and the ideal glass
transition lines determined with MCT. The legend is the same as in
Fig. 4. Note that the second critical point survives with respect to
the glass transition while the region around the second critical point
becomes metastable with respect to the freezing. Moreover, we can
observe that by decreasing the temperature the densities which de-
limit the glass region move progressively to higher values. Lines
are simply a guide to the eye.
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the possibility of passing from a glass phase to a liquid
phase, decreasing the temperature. It is perhaps worth mak-
ing a few remarks about this issue. It is now well established
that systems characterized by a step repulsion and a short
range attraction, possess a reentrance in the the dynamical
arrest. In these systems it is possible to melt the glass by
lowering the temperature. This is a phenomenon now well
established in theory, simulations, and experiments
[29,58–61]. Clearly, one would be tempted to relate our find-
ings to this phenomenology of colloidal solutions; however,
we showed that the origin of such effect in our case is dif-
ferent. For short range attractive colloidal systems at low
temperature there is a glass phase originated solely by attrac-
tion and the reentrant melting arises from the competition
between the high temperature and low temperature regime.
For our system, however, there is no indication of an attrac-
tion dominated glass at low temperature and the destabiliza-
tion of the glass is due to the destabilization of the cages that,
in the high temperature regime, are responsible for the arrest.
For h*0.5, we found that the glass-fluid line moves to
higher densities when the temperature decreases. As a con-
sequence, by increasing the intensity of the attraction, for a
fixed density and arm number, the system moves from a
liquid to a glass. This behavior is closely connected to the
ultrasoft nature of the pair interaction. We recall that stars in
a good solvent show a remelting of the glass phases(or solid
phases at the equilibrium) for very high densities. The addi-
tion of attractive forces moves the glass-fluid line to higher
densities. We could explain this effect as a contribution of
the attraction to stabilize the cages and then to inhibit the
remelting of the solution.

For f =45,46 the behaviors of SP2 and SP3 are very dif-
ferent. In the casef =46 for SP2 we observed the qualitative
behavior found forf ù50, while for SP3 there exists a value
of the temperature,T* .0.6, below which the system does
not present any sign of a glass transition. Forf =45 consid-
ering SP2 we observed the presence of a glass transition,
while for the simply repulsive interaction this transition is
not present for such value off, i.e., the attraction seems to
facilitate the formation of the glass. In the SP3 case we did
not observe glass phases for all the temperature values inves-
tigated. So in this case the effect of the addition of the at-
traction is a destabilization of the cages only.

To verify the MCT results we performed the analysis of
the dynamics by means of MD simulations. As introduced in
Sec. III A, the range of density which we examined is not
sufficiently close to the ideal glass lines. For densities closer
to the transition lines(mainly for f =45,46) the system shows
a strong tendency toward crystallization. So we verify our
MCT predictions forf ù50.

From the whole analysis performed, we evidenced a value
of the packing fraction, i.e.,h=0.5, which marks a change in
the behavior of the solution. This value could be traced back
to the crossover between the two different functional forms
of the repulsion: the logarithmic form and the Yukawa one.
For star polymers in a good solventh=0.5, the so-called
overlap packing fraction, corresponds to the packing fraction
above which the radial distribution function shows a coordi-
nation shell inside the logarithmic core. In other words, for
h.0.5 stars start to interpenetrate widely. Also in this case

the crossover designates approximatively the transition of the
system through two different regimes. Forh,0.5 the re-
sponse of the system to the introduction of attractive forces
is a destabilization of the cage. This is mainly due to the
change in the repulsive contribution at short distances which
become softer and softer considering, respectively, SP1, SP2,
and SP3. For h.0.5 stars interpenetrate more and more. The
effect of the attraction seems to inhibit the remelting of the
solution and the glass-fluid line move to higher densities.
The shift of the transition line could be understood consid-
ering the effect of the attraction on the second shell of neigh-
bors. Indeed, if we look the radial distribution function very
close to the glass-fluid transition line, at low temperature, we
observe that the second shell of particles is aroundr =2. In
this region, see Fig. 1, we can observe that the system feels
stronger attractive forces passing from SP1 to SP2 and then to
SP3. We conjecture that this attraction on the second neigh-
bor shell is at the origin of the extended stabilized region of
the glass phase for higher densities.

We must comment on some details relative to our analy-
sis: first of all, Vtot does not present considerable repulsive
maxima for larger when the temperature is lower thanT*
&1 for SP2 and T* ,0.8 for SP3. Obviously the repulsive
contribution at longer range is more pronounced for higher
temperatures(when the intensity of the attraction diminishes)
and low arm numbers(when the Yukawa pair interaction
decay to zero very slowly). Anyway, also below these tem-
peratures, where the pair interaction shows a small repulsive
contribution at larger (around.3), we verify that our MCT
predictions do not depend on the existence of the repulsive
shoulder. Indeed we performed the same MCT calculation
with a truncated potential in which the repulsive shoulder is
suppressed. We conclude that for the temperature and densi-
ties of interest in our study the presence of this small repul-
sive contribution at large distance does not alter the picture
of the glass regions. We emphasize that the presence of the
shoulder is not an effect of our particular choice of the at-
tractive contribution: due to the ultrasoft-core repulsion and
to the Yukawa repulsive contribution at long range, the in-
troduction of attractive forces of shorter range(i.e., depletion
forces) could determine an additional repulsion outside the
core.

Since the potential presents an ultrasoft-core interaction, it
is difficult to determine a natural scale of energy(and length
scale). We decided to rescale the temperature with respect to
the integrated intensity of the attractive contributionsTnewd in
such a way to compare our results in a more significant way.
In Fig. 14 we present a comparison between the MCT data
obtained for 45ø f ø50 considering the SP2 and SP3 models.
As we can observe forf =50 the effect of destabilization of
the cages as well as the inhibition of the melt is more accen-
tuated for SP3.

Finally, SP2 and SP3 show apparently conflicting behavior
concerningf =45,46. Due to the very small range off it is
very difficult to understand this peculiar behavior starting
from the pair interaction. As we recall above,h=0.5 is a
value for which star polymers in an athermal solvent, at the
equilibrium, are in a solid phase and in particular 0.5 is just
in the middle of the solid regions34, f ,70d. Around this
region we find that the system has a very strong tendency to
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crystallize. Indeed, despite the change observed in the struc-
ture factor, and considering the connection between equilib-
rium phase diagram and glass transition line(Ref. [30]), we
expect for SP2 and SP3 a small shift of the solid region with
respect to the purely repulsive case. Note that this region
corresponds to the glass region we determined for stars with
f =45,46. It is not surprising that our data in the case off
=45,46 show an ambiguous trend between SP2 and SP3. For
the above-mentioned reasons we do not believe it is very
interesting to analyze further onf &46.

We conclude from this analysis that the details of the
phase diagram, concerning glass transition, is very sensitive
to the particular, specific form of the attractive contribution.

This could be mainly connected to the change of the short
range repulsive contribution when attractive forces between
stars are introduced and not dependent on the choice of the
specific model. We expect the same behavior also consider-
ing depletion forces. Moreover, in the case of a general mix-
ture of micelles with the hydrophobic group at the ends of
the polymer chains, as discussed in Sec. II, the attractive
contribution will be at very short range and close to interpar-
ticle separation equal tos. This determines a change in a
repulsive interaction in the region where in star polymer so-
lution there is a crossover between the logarithmic form and
the Yukawa one. We decide to complete our analysis consid-
ering a specific system described by specific attractive
forces. Starting from this analysis, a future perspective of our
work on star polymer solutions would be a more direct com-
parison between theory and experiments about the origin and
the description of the attractive interaction. In this sense we
decided to turn our attention, more in general, to systems of
micelles which can be described by soft-core potential plus
attraction at shorter range, similar to star polymer macromol-
ecules. There exist many reasons to further study star poly-
mer solutions: a precise understanding of their properties
will allow the possibility of making progress in the explora-
tion of hybrid polymeric-colloidal materials such as irregular
multiarm stars, self-organized structures resulting from
telechelic linear homopolymers and copolymers, polyelectro-
lyte brushes, and micelles with chemically fixed cores.
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